The following example computes the intersection of a sequence of ideals.

i1 : R=ZZ/101[a..d]; |

i2 : I=intersect(ideal(a,b),ideal(b,c),ideal(c,d),ideal(d,a)) o2 = ideal (b*d, a*c) o2 : Ideal of R |

The following example computes the intersection of a list of modules.

i3 : R=ZZ[x,y,z]; |

i4 : M=image matrix{{3*x},{3*x}}; |

i5 : N=image matrix{{5*y},{5*y}}; |

i6 : P=image matrix{{7*z},{7*z}}; |

i7 : intersect{M,N,P} o7 = image | 105xyz | | 105xyz | 2 o7 : R-module, submodule of R |

The command intersect will only work with proper ideals. To intersect an ideal with a ring, use selectInSubring along with the elimination ordering, see Eliminate.

- intersect(List)
- intersect(Sequence)